23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236 | class GetOverlappingUVs(object):
def _createBoundingCircle(self, meshfn):
""" Represent a face by center and radius
:param meshfn: MFnMesh class
:type meshfn: :class:`maya.api.OpenMaya.MFnMesh`
:returns: (center, radius)
:rtype: tuple
"""
center = []
radius = []
for i in range(meshfn.numPolygons): # noqa: F821
# get uvs from face
uarray = []
varray = []
for j in range(len(meshfn.getPolygonVertices(i))):
uv = meshfn.getPolygonUV(i, j)
uarray.append(uv[0])
varray.append(uv[1])
# loop through all vertices to construct edges/rays
cu = 0.0
cv = 0.0
for j in range(len(uarray)):
cu += uarray[j]
cv += varray[j]
cu /= len(uarray)
cv /= len(varray)
rsqr = 0.0
for j in range(len(varray)):
du = uarray[j] - cu
dv = varray[j] - cv
dsqr = du * du + dv * dv
rsqr = dsqr if dsqr > rsqr else rsqr
center.append(cu)
center.append(cv)
radius.append(math.sqrt(rsqr))
return center, radius
def _createRayGivenFace(self, meshfn, faceId):
""" Represent a face by a series of edges(rays), i.e.
:param meshfn: MFnMesh class
:type meshfn: :class:`maya.api.OpenMaya.MFnMesh`
:param faceId: face id
:type faceId: int
:returns: False if no valid uv's.
""(True, orig, vec)"" or ""(False, None, None)""
:rtype: tuple
.. code-block:: python
orig = [orig1u, orig1v, orig2u, orig2v, ... ]
vec = [vec1u, vec1v, vec2u, vec2v, ... ]
"""
orig = []
vec = []
# get uvs
uarray = []
varray = []
for i in range(len(meshfn.getPolygonVertices(faceId))):
uv = meshfn.getPolygonUV(faceId, i)
uarray.append(uv[0])
varray.append(uv[1])
if len(uarray) == 0 or len(varray) == 0:
return (False, None, None)
# loop through all vertices to construct edges/rays
u = uarray[-1]
v = varray[-1]
for i in range(len(uarray)): # noqa: F821
orig.append(uarray[i])
orig.append(varray[i])
vec.append(u - uarray[i])
vec.append(v - varray[i])
u = uarray[i]
v = varray[i]
return (True, orig, vec)
def _checkCrossingEdges(self,
face1Orig,
face1Vec,
face2Orig,
face2Vec):
""" Check if there are crossing edges between two faces.
Return True if there are crossing edges and False otherwise.
:param face1Orig: origin of face 1
:type face1Orig: tuple
:param face1Vec: face 1 edges
:type face1Vec: list
:param face2Orig: origin of face 2
:type face2Orig: tuple
:param face2Vec: face 2 edges
:type face2Vec: list
A face is represented by a series of edges(rays), i.e.
.. code-block:: python
faceOrig[] = [orig1u, orig1v, orig2u, orig2v, ... ]
faceVec[] = [vec1u, vec1v, vec2u, vec2v, ... ]
"""
face1Size = len(face1Orig)
face2Size = len(face2Orig)
for i in range(0, face1Size, 2): # noqa: F821
o1x = face1Orig[i]
o1y = face1Orig[i+1]
v1x = face1Vec[i]
v1y = face1Vec[i+1]
n1x = v1y
n1y = -v1x
for j in range(0, face2Size, 2): # noqa: F821
# Given ray1(O1, V1) and ray2(O2, V2)
# Normal of ray1 is (V1.y, V1.x)
o2x = face2Orig[j]
o2y = face2Orig[j+1]
v2x = face2Vec[j]
v2y = face2Vec[j+1]
n2x = v2y
n2y = -v2x
# Find t for ray2
# t = [(o1x-o2x)n1x + (o1y-o2y)n1y] /
# (v2x * n1x + v2y * n1y)
denum = v2x * n1x + v2y * n1y
# Edges are parallel if denum is close to 0.
if math.fabs(denum) < 0.000001:
continue
t2 = ((o1x-o2x) * n1x + (o1y-o2y) * n1y) / denum
if (t2 < 0.00001 or t2 > 0.99999):
continue
# Find t for ray1
# t = [(o2x-o1x)n2x
# + (o2y-o1y)n2y] / (v1x * n2x + v1y * n2y)
denum = v1x * n2x + v1y * n2y
# Edges are parallel if denum is close to 0.
if math.fabs(denum) < 0.000001:
continue
t1 = ((o2x-o1x) * n2x + (o2y-o1y) * n2y) / denum
# Edges intersect
if (t1 > 0.00001 and t1 < 0.99999):
return 1
return 0
def _getOverlapUVFaces(self, meshName):
""" Return overlapping faces
:param meshName: name of mesh
:type meshName: str
:returns: list of overlapping faces
:rtype: list
"""
faces = []
# find polygon mesh node
selList = om.MSelectionList()
selList.add(meshName)
mesh = selList.getDependNode(0)
if mesh.apiType() == om.MFn.kTransform:
dagPath = selList.getDagPath(0)
dagFn = om.MFnDagNode(dagPath)
child = dagFn.child(0)
if child.apiType() != om.MFn.kMesh:
raise Exception("Can't find polygon mesh")
mesh = child
meshfn = om.MFnMesh(mesh)
center, radius = self._createBoundingCircle(meshfn)
for i in range(meshfn.numPolygons): # noqa: F821
rayb1, face1Orig, face1Vec = self._createRayGivenFace(meshfn, i)
if not rayb1:
continue
cui = center[2*i]
cvi = center[2*i+1]
ri = radius[i]
# Exclude the degenerate face
# if(area(face1Orig) < 0.000001) continue;
# Loop through face j where j != i
for j in range(i+1, meshfn.numPolygons):
cuj = center[2*j]
cvj = center[2*j+1]
rj = radius[j]
du = cuj - cui
dv = cvj - cvi
dsqr = du * du + dv * dv
# Quick rejection if bounding circles don't overlap
if (dsqr >= (ri + rj) * (ri + rj)):
continue
rayb2, face2Orig, face2Vec = self._createRayGivenFace(meshfn,
j)
if not rayb2:
continue
# Exclude the degenerate face
# if(area(face2Orig) < 0.000001): continue;
if self._checkCrossingEdges(face1Orig,
face1Vec,
face2Orig,
face2Vec):
face1 = '%s.f[%d]' % (meshfn.name(), i)
face2 = '%s.f[%d]' % (meshfn.name(), j)
if face1 not in faces:
faces.append(face1)
if face2 not in faces:
faces.append(face2)
return faces
|